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Abstract

We approximate and classify the forms of profile sections of folded surfaces by comparison with cubic Bézier curves. The method analyses

a digital image of the fold profile, by interactive visual comparison, with the curves generated by the Bézier drawing tool available commonly

in graphics software products. Simplified equations of cubic Bézier curves form the basis of the classification in terms of two parameters. The

first parameter, L, is related to the distribution of curvature on a single limb of a fold between the hinge point and the inflection point. It places

the fold within a shape spectrum that ranges from straight-limbed chevron folds (L ¼ 0) in which curvature is concentrated in the hinge

region through to rounded folds with a uniform curvature distribution (L ¼ 1). The second parameter, R, is related to the ratio of amplitude to

wavelength. A graph of L against R serves to group samples of folds into ‘shape groups’. This classification can be used as a tool to assist the

determination of relative competence of folded layers and of the folding mechanism. The new method, which has the advantages of speed and

simplicity, is applied to examples of natural and experimentally developed folds to demonstrate its versatility for analysing a wide range of

fold geometries.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Folded interlayer surfaces display a broad spectrum of

forms ranging from rounded geometry with a relatively

uniform distribution of curvature, to straight-limbed chev-

ron geometry with curvature concentrated in the hinge

zones. Structural geologists have been long aware of the

importance of fold shape attributes in the localisation of

mineral resources, such as oil, gas and saddle-reef gold

deposits. If these fold shape attributes can be extracted, they

also might be used to help constrain kinematics and rock

properties during deformation.

There are numerous previous studies concerned with the

analysis and structural significance of fold shape. For

example, Chapple (1969) showed that the mismatch

between theoretically predicted and natural fold shapes is

due to the non-linear viscous-plastic properties of rocks.

Bayly (1974) related fold shape to energy dissipation during

the buckling of multilayers. Woodcock (1976) used shape

analysis to compare slump folds with tectonic folds and he

concluded that these two types of folds are indistinguishable

with respect to fold shape. Ramsay (1982) related fold shape

variations, from cuspate–lobate geometry to elastica, to

progressively increasing viscosity contrast. Ridley and

Casey (1989) explained how the production of sharp-hinged

folds could be favoured in rock layers with strong

anisotropic properties. Hudleston and Lan (1994) used

numerical modelling of power-law viscous materials to

explore the link between fold shape and the stress exponent

and the viscosity contrast between layers.

These studies have employed a number of different

methods for describing and classifying fold shapes. Ramsay

(1967, pp. 347–348) showed how the true-profile shapes

can be distinguished using graphs that plot curvature as a

function of position along the folded surface. Based on

measurements of this kind, Hudleston and Lan (1994)

devised a curvature index, ki, to assist comparison and

classification of folds.

Other methods involve a comparison of the fold profile

with curves corresponding to mathematical functions. For

example, Chapple (1968), Stabler (1968) and Hudleston

(1973a) have used Fourier analysis for quantitative
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description of fold shapes. Stabler (1968) and Hudleston

(1973a) find that two Fourier coefficients are sufficient for

fold classification purposes whilst Stowe (1988) advocates

the use of 10 of more Fourier coefficients for accurate

description of fold shapes. Other methods have employed

other types of mathematical functions. For example, Bastida

et al. (1999) have suggested fitting fold shapes to power

functions. Their classification is based on two parameters:

the exponent n, describing the shape, and the amplitude/

wavelength ratio. Aller et al. (2003) utilise the eccentricity

and aspect ratio of conic sections for classification of fold

shapes.

To simplify the analysis of fold shape by eliminating the

need for measurements of curvatures, distances or angles,

Hudleston (1973a) suggested a method of classification in

which the natural fold is visually compared with a series of

pre-drawn standard shapes of 30 folds. These reference

shapes are defined in terms of Fourier coefficients. The

advantage of this technique being able to be used in the field

is offset by the fact that the visual fitting is hindered by scale

differences, subjectivity and a limited range of standard fold

types. This paper describes a simple alternative scheme for

analysing folded surfaces that takes advantage of the curve-

drawing tools available on common computer drafting

software. These Bézier curves can be easily designed and

modified to match, by ‘interactive fitting’, a scanned image

of most natural folds.

2. Cubic Bézier curves

The present method is based on a comparison of fold

profiles to cubic Bézier curves (Farin, 1990; Wojtal and

Hughes, 2001). Each segment of such curves is uniquely

defined by the position of four points (Fig. 1a); two points,

P0 and P3, marking the two ends of the curve and two further

control points, P1 and P2. The parametric equation of a

segment of a cubic Bézier curve (Davies et al., 1986; De

Paor, 1996) is:

xðtÞ ¼ ð1 2 tÞ3x0 þ 3ð1 2 tÞ2tx1 þ 3ð1 2 tÞt2x2 þ t3x3 ð1aÞ

yðtÞ ¼ ð1 2 tÞ3y0 þ 3ð1 2 tÞ2ty1 þ 3ð1 2 tÞt2y2 þ t3y3 ð1bÞ

The parameter t marks progress along the Bézier curve from

the start point P0, where t ¼ 0, towards the end point P3,

where t ¼ 1. The Bézier curve, made up of a succession of

points corresponding to different t values, is therefore

defined by eight quantities: (x0, y0), (x1, y1), (x2, y2) and (x3,

y3), i.e. the coordinate values of points P0, P1, P2 and P3,

respectively.

Since it is impractical to classify folds based on eight

variables, we suggest the following procedure to reduce

eight variables to two variables for describing the fold

shape. Firstly, we standardise the location, orientation and

scaling of the fold limb by selecting a suitable Cartesian

reference frame, such that the line P0 P1 is parallel to the x-

axis and points P0 and P3 coincide with the hinge point and

inflection point, respectively (Fig. 1b). The fold limb, at this

stage, has an amplitude A, base-length B and aspect ratio

R ¼ A/B. Because the procedure and results are independent

Fig. 1. (a) A cubic Bézier curve defined by four control points, P0–P3. The

parameter t describes progress of a moving point along the Bézier curve. (b)

The simplified Bézier curve used for the shape description of a fold limb.

The geometry of the fold limb is scaled so that base-length B is of unit

length. Consequently, A, the relative amplitude, equals the aspect ratio, R,

of the fold limb. Similarly, L, the shape parameter, is equal to the distance

P1P0.

Fig. 2. Fold shapes generated by Eqs. (2a) and (2b), for unit aspect ratio,

R ¼ 1 (i.e. A ¼ B), and various L values. Where L . 1.0, the interlimb

angle becomes negative and the folds assumes the shapes of elastica

(dashed curves).
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of the absolute values of A and B, we assume B to be of unit

length for the sake of simplification. Secondly, we move

control point P2 to coincide with the position of P3, so that

x2 ¼ 1 and y2 ¼ 0. The effect of this is to reduce to zero the

influence of P2 on the curve’s shape. The co-ordinates of

points P0, P1 and P2 ¼ P3 are (0, R), (L, R) and (1, 0),

respectively, where L is the distance between P0 and P1. We

define L as a fold shape parameter. By substituting the

values of the new co-ordinates of P0 (0, R), P1 (L, R),

P2 ¼ P3 (1, 0) in Eqs. (1a) and (1b), we get the following

equations of our simplified Bézier curve:

xðtÞ ¼ 3ð1 2 tÞ2tLþ 3ð1 2 tÞt2 þ t3 ð2aÞ

yðtÞ ¼ R ð1 2 tÞ3 þ 3ð1 2 tÞ2t
n o

ð2bÞ

As a result of these simplifications to the general Bézier

curve, we note that only two variables, L and R, are needed

to define the fold shape and that these two variables are

expressed by the position of control point P1.

Fig. 2 shows how the shape parameter L controls the

distribution of curvature in the fold limbs of unit aspect

ratio. One end of the shape spectrum, L ¼ 0, corresponds to

chevron folds with straight limbs and curvature concen-

trated at the hinge. The other end member, L ¼ 1,

corresponds to approximately semi-circular or rounded

forms where the curvature is constant, or to semi-elliptical

forms depending on the aspect ratio, R. The effect of varying

L and R on the fold shapes, modelled by the Bézier curves

described in Eqs. (2a) and (2b), is shown in Fig. 3a.

Conveniently, ideal fold geometries are characterised by L

only (Fig. 3b). For example, cosine curves all possess

L ¼ 0.44, whilst parabolas all have L ¼ 0.55. Lines of

constant tightness (Fleuty, 1964), corresponding to inter-

limb angles possessed by equivalent symmetrical folds, are

also plotted on Fig. 3b. The equation for these lines, derived

by differentiating Eqs. (2a) and (2b) gives the slope of the

Bézier curve at the inflection point:

Interlimb angle ¼ 2tan21{ð1 2 LÞ=R} ð3Þ

Eq. (3) produces a negative slope when L . 1, and the

corresponding fold shapes resemble elasticas (Figs. 2 and

3b). In detail, however, these curves are poorly suited for

comparing with real folds because the part of these curves

with greatest curvature does not coincide with the point

labelled as the hinge in Fig. 2. The same problem arises with

the folds that plot below the line joining the points (0,0) and

(1,1) in Fig. 3a.

Fig. 3. (a) Fold shapes defined by L and R parameters. Most possible fold geometries can be represented on this graph. (b) Interlimb angle classification

according to Fleuty (1964) and idealised fold geometries shown on the L–R diagram.
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3. The new procedure

The new method is designed for computer implemen-

tation, and analyses a digital image of the fold’s profile

section taken by a digital camera or generated by scanning a

photograph. Also required is a personal computer and

drawing software that incorporates the cubic Bézier tool for

creating curves, e.g. CorelDraw, Adobe Illustrator or

Macromedia Freehand. The method analyses each limb of

a fold separately and is therefore not limited to symmetrical

folds:

(i) Import the digital image of the fold into the graphic

software, say CorelDraw.

(ii) Mark the hinge point, h, and the inflection point, i, on

the folded segment that has to be analysed, and draw a

tangent at the hinge point h (Fig. 4a).

(iii) Rotate the image until the tangent at the hinge point

becomes horizontal and draw a rectangle, hjik, such

that line hi defines one of its diagonals (Fig. 4b). The

aspect ratio of the fold limb, defined by the parameter

R, equals the ratio, hk/hj, of the two sides of the

rectangle.

Fig. 4. Stepwise procedure for analysis of fold limb. (a) Selection of hinge

point h and inflection point i. Draw tangent at hinge. (b) Rotate fold until

tangent is horizontal. Points h, i, p and q correspond, respectively, to points

P0, P3, P1 and P2 in Fig. 1a. (c) Move control points p and q on diagonal hi

in direction of grey arrows (see text for details). (d) Move control point p

from h towards j to obtain desired fit.

Fig. 5. (a) Example of multilayer folds in the Moine Series of Mull, Northern Scotland (after Ramsay and Huber, 1987, p. 318). Psammitic and pelitic layers are

grey and white, respectively. (b) L–R plot showing results of Bézier analyses of fold limbs shown in (a). Two distinct clusters on the graph correspond to two

predominant families of fold shapes present at this outcrop.
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(iv) Draw a straight line, hi along the diagonal of the

rectangle hjik (Fig. 4c).

(v) Convert the line hi into curved mode. This procedure

yields two levers, hp and iq, that start from points h and

i and end at two control points p and q, respectively

(Fig. 4c).

(vi) Using the mouse, drag the control points pand q, such

that these coincide with points h and i, respectively

(Fig. 4d). Displace the control point p along the line hj

until the line hi traces out the given fold shape. The

shape parameter L is given by the ratio hp/hj (Fig. 4d).

(vii) Plot R and L as a point on the Cartesian graph shown in

Fig. 3. This point uniquely defines the shape of the

given fold limb. Mathematically, the shape of the limb

is described by Eqs. (2a) and (2b) by substitution of

values of L and R and varying t from 0 to 1.

4. Examples

The Bézier curve method has been tested on a large

number of scanned images of idealised fold shapes (figs. 12

and 13 in Hudleston, 1973a), experimentally simulated fold

shapes (figs. 3 and 8 in Hudleston, 1973b) and natural

occurrences of folds (fig. 2 in Stabler, 1968; figs. 15.15 and

19.11 in Ramsay and Huber, 1987, pp. 318 and 393; fig. 2 in

Lisle, 1992). Bézier curves satisfactorily matched all the

examples, except for a series of five box folds depicted in

figs. 1A–5A in Hudleston (1973a). Box folds and multiple

hinge folds, in general, are difficult to simulate by Bézier

curves because of the lack of inflection points between

successive hinges. For the purpose of illustration of the new

method, we present only two examples here; one of natural

fold shapes and one of experimentally produced folds.

4.1. Multilayer folds in Moine Series from Mull, Scotland

This example, taken from part of fig. 15.15 in Ramsay

and Huber (1987, p. 318), shows a variety of fold shapes

traced by the psammite–pelite sequence. In addition to

inflection points, hinge points and axial traces, different

limbs of folded layers are marked from 1 to 16 (Fig. 5a).

Each limb is analysed separately by using the Bézier method

and plotted as a point on the Cartesian graph L–R (Fig. 5a).

These points fall in two distinct clusters that imply the

occurrence of two dominant families of fold shapes at this

outcrop. The cluster corresponding to relatively smaller

values of L and higher values of R encloses plots of

Fig. 6. (a) Shape of folds produced in single layer buckling experiment of Hudleston (1973b). The competent layer is shaded. (b) L–R plot showing results of

Bézier analyses of fold limbs 1–36 shown in (a). Three clusters on the plot represent three dominant fold shapes that are correlatable to distance of the folded

surface from the competent layer C–D (see text for details).
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sharp-crested folds with relatively higher amplitude/wave-

length ratios. The second cluster, corresponding to higher

values of L and smaller values of R, contains plots of broad

hinge zone folds with relatively lower amplitude/wave-

length ratios (Fig. 5b).

4.2. Experimental folds

This example is based on folds developed in a single

layer buckling experiment of Hudleston (1973b). The folds

shown in Fig. 6a consist of six surfaces; namely, A–F.

Surfaces C and D bound an active competent layer, whilst

all other surfaces are analogous to passive layers.

Results of Bézier curve analyses on 36 fold limbs in

layers A–F are plotted on an L–R graph, where three

clusters are evident (Fig. 6b). These clusters correspond to a

position of the folded surface with respect to the competent

layer C–D and its zone of contact strain. The competent

layer (C–D) shows folds of relatively high amplitude, and

shapes between parabola and semi-ellipse. Adjacent to the

competent layer (B and E), the folds show smaller amplitude

and shapes similar to cosine curves. Farther from the

competent layer (A and F), an amplitude decrease is

associated with folds with a range of shapes including

those approaching chevron style.

5. Limitations and sources of error

The method proposed here is not suitable for multiple

hinge folds. Bézier curves tend to fit rather poorly to very

broad hinged folds and folds with limb dip greater than 908,

e.g. elastica folds. Although the method is not free from

measurement errors, these can be minimised by using

graphic tools, such as ‘snap to guidelines’ in CorelDraw.

The analysis of fold shapes by Bézier curves is, however,

sensitive to the selection of hinge and inflection points on

the folded layer. The errors in the results, in general,

increase with the roundness of the hinge zone; chevron folds

are least affected and semi-circular or semi-elliptical folds

are most affected. We demonstrate these effects with the

help of four idealised fold shapes, all with an aspect ratio of

R ¼ 2.6, but with a shape parameter L equal to 0.0, 0.2, 0.6

and 1.0, respectively. A shift in the hinge point by an

Fig. 7. Errors in selection of hinge and inflection points. These estimates are depicted for folds with correct aspect ratio R ¼ 2.6. (a) h—correct hinge point,

h1—hinge point offset by 15% of the quarter wavelength of fold. Tie lines join the plots for four folds corresponding to L ¼ 0.0, 0.2, 0.6 and 1.0, respectively.

Inset shows an example of fold with L ¼ 0.6. dL—deviation in control point due to offset of hinge point from h to h1. (b) i—correct inflection point. i1 and i2—

inflection points with a shift of ^15% of the linear distance between hinge point h and correct inflection point i, respectively. Inset shows an example of fold

with L ¼ 0.6. dL—deviation in control point due to shift in inflection point from i1 to i2.
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amount equal to 15% of the quarter-wavelength of the fold

results in a considerable increase in crest sharpness

(decrease in L) and also an increase in the determined

aspect ratios of all folds (Fig. 7a). Similarly, an error in

locating inflection points, by an amount equal to ^15% of

the linear distance between hinge point and inflection point

(hi), results in a significant change in aspect ratio, but in a

relatively minor change in the shape of the folds (Fig. 7b).

The aspect ratio increases or decreases depending upon the

direction in which the inflection point is shifted.

We emphasise that the method described here, in

common with all related methods, is designed for the

analysis of true fold profiles. Oblique sectioning can lead to

large errors, depending on the deviation of the section plane

from the profile plane.

6. Conclusions

Computer-aided Bézier curve analysis offers a quick

method for analysing the distribution of curvature from the

hinge point to the inflection point in any segment of a folded

surface. With some practice, it takes only a few minutes to

analyse a given fold limb. Since our method analyses

individual fold limbs, its application is independent of the

symmetry of the folds (Twiss, 1988).

An advantage of the present method over other methods

that match folds with mathematical functions is that the

fitting procedure involves the use of the entire curve, rather

than the coordinates of a few selected points. The results can

be conveniently plotted on the L–R graph in Fig. 3, where L

and R are parameters expressing the fold’s curvature

distribution and aspect ratio, respectively. Tests on several

natural, experimental, and idealised examples demonstrate

the practicality and speed of the method and its applicability

to a large variety of possible fold forms.

The new method serves to separate folds, observed at the

outcrop or simulated in numerical or analogue experiments,

into ‘shape groups’. We provide an example where such

groupings may be interpreted in terms of the location of

folds within the zone of contact strain in the vicinity of a

buckled competent layer (Fig. 6). There are, however,

several other uses of this shape analysis tool. For example,

the method may find application in attempts to distinguish

folds in terms of modes of formation (e.g. layer parallel

shortening, diapirism, syn-sedimentary slumping, tectonic

deformation of indurated layers), in terms of relative layer

competence, or in terms of folding mechanisms.
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